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ABSTRACT
In the recent years, global coronal models have experienced an ongoing increase in popularity as

tools for forecasting solar weather. Within the domain of up to 21.5 R�, magnetohydrodynamics
(MHD) is used to resolve the coronal structure using magnetograms as inputs at the solar surface.
Ideally, these computations would be repeated with every update of the solar magnetogram so that
they could be used in the ESA Modelling and Data Analysis Working Group (MADAWG) magnetic
connectivity tool (http://connect-tool.irap.omp.eu/). Thus, it is crucial that these results are both
accurate and efficient. While much work has been published showing the results of these models in
comparison with observations, not many of it discusses the intricate numerical adjustments required to
achieve these results. These range from details of boundary condition formulations to adjustments as
large as enforcing parallelism between the magnetic field and velocity. By omitting the electric field in
ideal-MHD, the description of the physics can be insufficient and may lead to excessive diffusion and
incorrect profiles. We formulate inner boundary conditions which, along with other techniques, reduce
artificial electric field generation. Moreover, we investigate how different outer boundary condition
formulations and grid design affect the results and convergence, with special focus on the density
and the radial component of the B-field. The significant improvement in accuracy of real magnetic
map-driven simulations is illustrated for an example of the 2008 eclipse.
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1. INTRODUCTION
Global coronal models based on CFD (Computational

Fluid Dynamics) methods applied to MHD equations
are becoming a widely used tool to aid solar weather
predictions (see e.g., Usmanov 1996; Linker et al. 1999;
van der Holst et al. 2014; Pinto & Rouillard 2017; Mikić
2018; Réville 2020, and reference therein). In these mod-
els, solar photospheric magnetic map data are used to
prescribe the radial component of the magnetic field
on the inner boundary of the domain, representing the
lower corona and then, MHD equations are solved in the
rest of the domain. This domain typically extends over
roughly 21 solar radii, beyond which faster and more ide-
alised heliospheric codes, such as EUHFORIA (a code
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for space weather predictions of the solar wind and CME
evolution, see, e.g., Poedts 2020; Pomoell & Poedts 2018;
Scolini et al. 2018, 2019), can be coupled to study the
propagation of the coronal features to the rest of the
solar system.
Since in this case, the outer boundary data resulting

from the MHD simulation are used as an input for EU-
HFORIA (see an example of such application in Samara
et al. (2021)) or other codes to detect possible geomag-
netic storms, it is crucial that the features (e.g. coro-
nal streamers) in the MHD solutions are accurately re-
solved. To this end, the boundary conditions must be
formulated appropriately and the numerical phenomena
arising in the simulations understood possibly avoided,
which is the aim of this paper. One such problematic nu-
merical phenomenon arises from the fact that the ideal
(single-fluid) MHD equations are only a simplified ver-
sion of a more detailed multi-fluid description of solar
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2 Brchnelova et al.

plasmas. Unlike multi-fluid models, they solve for the
electric field only implicitly, without resolving it in ab-
solute terms. It is shown in this paper that not properly
accounting for the electric field in ideal MHD when for-
mulating the inner boundary condition leads to a loss of
accuracy and sharpness in the results and, in the worst
case scenario, even leads to completely incorrect profiles.
Determining realistic values of the electric field in the

solar corona is problematic. While there exist techniques
to estimate the photospheric electric field such as inver-
sion from the observed V- and B-fields (see for example
the work of Lumme (2016)), getting the estimate of the
electric field in the corona is not possible in this way as
we do not have direct observations of the magnetic field.
The magnitude of the electric field in the quiet corona is
typically expected to be very small owing to the conduc-
tivity of the solar wind plasma (Kislov 2022), at least
outside of regions of large velocities where even a small
misalignment between the velocity and the magnetic
field could cause large E-fields. For that reason, also
magnetostatic solutions, in which the electric fields re-
lax to zero, are used to represent and predict the coronal
behaviour (Contopoulos et al. 2011). Locally however,
the electric field can be enhanced by, for example, recon-
nection events in the current sheets or coronal holes, see
the work of Zank et al. (2014) or Zharkova & Khabarova
(2015). Parallel electric field generation due to Alfvén
or fast-magnetosonic waves is also predicted by for ex-
ample Kaghashvili (2012), in which case the predicted
magnitudes range from 1×10−2 to 1×10−1 mVm−1.
In our setup, we are looking at a steady-state back-

ground corona, where we would expect the resulting
electric field should to be very small. This is because
modelling of the above-mentioned E-field enhancing ef-
fects cannot be done properly for two reasons; one be-
ing that our simulation is not time-dependent to model
waves and second, that the majority of the reconnection
events observed in our simulations are driven by exces-
sive numerical diffusion instead of being physical, as will
be shown later in the paper.
To obtain sharp features and ensure a physical align-

ment of the V- and B-fields, the parallelism can be en-
forced artificially. This can be done by, for example,
aligning the resulting B-field with the velocity starting
from a certain distance from the Sun. A second op-
tion, recently proposed by Sokolov et al. (2021), con-
sists of solving reduced ideal MHD equations. However,
none of these two approaches may be easy to implement
into an existing numerical code, because the former re-
quires to override the B-field solutions during compu-
tation (which is far from trivial in, e.g., time-implicit
solvers like ours in which both the system Jacobian ma-

trix and the right-hand-side vector would need to be
manipulated in complex ways) and the latter requires
to completely alter the ideal MHD formulation. Some
other techniques can be used, however, to reduce the
artificial E-field generation and thus improve the sharp-
ness and accuracy of the features. It will be shown that,
for instance, one of the most crucial elements is the for-
mulation of the inner boundary condition (BC).
Even though the outer BC is supersonic and hence,

in theory, should not have much effect on the solution
in the domain, we will show that this is not true. Most
authors, when referring to the outer BCs of coronal mod-
els, mention that the state values of the boundary cells
are "extrapolated" to the ghost cells (see, for example,
Pomoell et al. (2011)). However, the manner in which
this extrapolation is performed affects the solution sig-
nificantly. As will be shown in this paper, aspects such
as the orientation and topology of the B-field lines of
streamers can be directly manipulated depending on
how the magnetic field is extrapolated into the ghost
cells.
Finally, many of these undesired effects can be reduced

by a careful grid design (see Brchnelova et al. (2022)),
which is another crucial aspect that will be discussed.
This grid type limits the extent to which the outer BC
can affect the domain and the coupling to heliospheric
codes such as EUHFORIA. All of these above mentioned
aspects are discussed in this paper.
This paper is organised as follows. In Section 2 better

insight into the origins of the E-field problem is provided
through the comparison of the full multi-fluid MHD and
the ideal MHD equations. For completeness’ sake, the
solver used in this study is also presented. In Section 3,
the mechanisms of the artificial E-field generation in our
simulations are identified, and their effects on the solu-
tion demonstrated on a steady-state dipole case. It is
shown that this mostly relates to the electric-field pro-
duction on the inner boundary, and thus this effort leads
to outlining recommendations on the formulation of the
inner BC. With the inner BC discussed, in Section 4, the
outer BC is addressed, where the effects of various ex-
trapolation laws are analysed. It is also shown that it is
not possible to prescribe a universally correct law for the
entire domain, leading to the introduction of a new type
of grid that can help reduce the outer-BC-related effects
in problematic regions. Finally, in Section 5, the pro-
posed techniques are applied to a data-driven simulation
of the global corona during the 2008 solar eclipse. The
last Section concludes our work and summarises recom-
mendations for procedures that could be standardised
for global coronal models in the future.
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2. THEORETICAL CONTEXT
Before diving into the design of boundary conditions,

we should first better understand the problem at hand.
First, the solver we work with in this paper is intro-
duced and afterwards, the origin of the E-field issue is
illustrated on comparing the full multi-fluid model equa-
tions with the ideal MHD equations.

2.1. Introduction to the COCONUT solver
The ideal MHD solver used in this paper is CO-

CONUT; a solver based on the COOLFluiD (Compu-
tational Object-Oriented Libraries for Fluid Dynamics)
platform. The latter has been developed since many
years for scientific multi-physics simulations (Lani et al.
2006; Kimpe et al. 2005; Lani et al. 2013), including
high-speed flows, radiation, thermo-chemical nonequi-
librium as well as plasma flows (see e.g., Santos & Lani
2016; Lani et al. 2011; Lani et al. 2014; Alonso Asensio
et al. 2019, and reference therein).
The details of the ideal MHD model for global coro-

nal modelling, its verification and initial validation are
presented in Perri et al. (submitted), where more details
about the numerical set-up can be found. Unlike the ma-
jority of global coronal models, this solver relies upon an
implicit scheme, i.e. the backward Euler time discretiza-
tion scheme, for steady state simulations. This allows it
to converge much faster compared to explicit schemes, as
the Courant-Friedrichs-Lewy (CFL) number can largely
exceed the value of 1 (up to 1000 or more depending
on the test case) during the computation. This feature
makes it a promising tool for real-time data-driven solar
simulations. The solver also works with unstructured
grids, which allows us to experiment with grid resolu-
tions and topologies to optimise the solver performance
(see Brchnelova et al. (2022)). In the future, it is also
planned to integrate adaptive mesh refinement (AMR)
(Ben Ameur & Lani 2021) and high-order Flux Recon-
struction algorithms (Vandenhoeck & Lani 2019) into
this model, which would dramatically increase the accu-
racy (potentially up to 10th order) on coarser grids and,
possibly, accelerate the convergence of the solver even
further.
The code uses a second-order accurate finite volume

(FV) discretization along with the hyperbolic divergence
cleaning (HDC) to ensure that the divergence of the B-
field stays zero. The MHD equations are solved on ar-
bitrarily unstructured grids in a nondimensional form.
The full form can be found in Perri et al. (submitted)
along with the formulation of the baseline BCs. In this
study however, the rotation is not considered. The ref-
erence values are set to:

ρref = 1.67 · 10−13 kg.m−3, Bref = 2.2 · 10−4 T, (1)

with then Vref computed to be the Alfvén velocity (4.5 ·
105 m.s−1), while the length-scales and coordinates are
adimensionalised according to the solar radius.
All of the simulations in this report, unless otherwise

specified, were performed without the use of a limiter
and with the 5-th subdivision level icosahedron-based
spherical mesh with prisms (see Brchnelova et al. (2022)
for details), with roughly 300k elements. The surface
of the spherical shell domain, starting from 1.1R� to
21.5 R�, is shown in Figure 1 along with a cut-through
showing the radial discretisation. When other grids are
used in the paper (e.g., the grid designed to minimise
outer-BC effects introduced later), it will be mentioned
explicitly.
Finally, before proceeding to the physics, convergence

of the solver should be touched upon. When discussing
residual levels in the text, the following definition of a
residual is used:

res(a) = log
√∑

i

(
ati − a

t+1
i

)2
, (2)

in which a is the relevant physical quantity, i the spatial
index and t the temporal index during the pseudo-time
stepping. In general, the velocity and the magnetic field
components are monitored during convergence. The
simulation is typically considered converged when the
velocity residual drops below -3 to -4. For comparison
analyses in this paper, however, the residual was brought
down to -10 in Vx to ensure that the differences observed
in the flow field are indeed due to the investigated as-
pects (e.g., the BCs) and not due to insufficient conver-
gence. It could be argued that looking at the squares
of absolute value differences might bias our focus to re-
gions where these values are by default higher, e.g. the
outer boundaries when it comes to the velocity field. For
this reason however, we also monitor the other residuals,
like the pressure, density and the magnetic field, where
the higher values are generally near the inner boundary
instead. Via ensuring that all of the residuals are suffi-
ciently small, the evaluation of convergence is more or
less balanced over the domain.
Now that the basic numerics has been discussed, the

physics can be elaborated on in further details.

2.2. The origin of the E-field problem
To outline the role of the electric field and why it

should be addressed in the inner BC design, it is in-
structive to show the full MHD equations considering
both ion (subscript "i") and electron (subscript "e") flu-
ids separately, as they both contribute to the generation
and removal of the electric field owing to their charges.
The resulting two-fluid model, in a dimensional form,
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Figure 1. The mesh used for most simulations in this paper is based on prisms and has 300k elements. We show a 3D rendering
of the outer spherical slice at 21 RSun on the left panel, and a 2D vertical cut to focus on the stretched radial structure in the
right panel.

can be formulated as follows (see e.g., Meier & Shumlak
2012). The (pre-)Maxwell equations read:

∇×E = −∂B
∂t
, ∇×B = µ0J, (3)

∇ ·B = 0, ∇ ·E = σ/ε0, (4)

where σ is the charge density (σ = neqe + niqi) and J
the electric current density (J = niqiVi + neqeVe). For
our two species, here ions and electrons, the continuity
equations can be written as:

∂ni
∂t

+∇· (niVi) = 0 and ∂ne
∂t

+∇· (neVe) = 0, (5)

respectively. The momentum conservation is, for elec-
trons:

∂

∂t
(meneVe) +∇ · (meneVeVe + Pe) =

− ene (E + Ve ×B) +meneg + Rie
i , (6)

and for ions:

∂

∂t
(miniVi) +∇ · (miniViVi + Pi) =

eni (E + Vi ×B) +minig + Rei
e , (7)

where P is the pressure, g the gravitational acceleration
and Rie

i and Rei
e the collisional momentum terms. If

the collisional frequency between ions and electrons can
be approximated through:

νie ∼
νei
Nc
∼ me

mi
νei ∼

Z2e4nim
1/2
e ln Λei

(4πε0)2
miT

3/2
e

, (8)

with ln Λ being the Coulomb logarithm and Z of 1, then
the momentum collisional exchange terms can be com-
puted through:

Rie
i = mime

mi +me
niνie(Ve −Vi) and Rie

i = −Rei
e .

(9)
Finally, the energy conservation reads:

∂Ψe

∂t
+∇ · (ΨeVe + Ve · Pe + he) =

Ve ·
(
−eneE +meneg + Rei

e

)
+Qeie , (10)

and

∂Ψi

∂t
+∇ · (ΨiVi + Vi · Pi + hi) =

Vi ·
(
eniE +minig + Rie

i

)
+Qiei . (11)
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in which Ψe and Ψi are the total internal energies of
the electrons and the ions, and Qeie and Qiei are the
collisional work terms between the two species:

Qiei = 1
2

(
Rie
i · (Ve−Vi)

)
+ 3niνiekB(Te−Ti), (12)

and

Qeie = 1
2

(
Rei
e · (Vi −Ve)

)
+ 3niνeikB(Ti − Te). (13)

In the model presented above, the electric field E is
typically one of the primitive variables that is solved for.
In Equations (10) and (11), we can see, for example, the
tendency of the two-fluid MHD to respond to existing
electric fields via their dynamics, as the two fluids react
to the present E-field in opposite ways. Charge separa-
tion, which can result from this response is, by itself, a
mechanism to create an opposing electric field, see Equa-
tion (3) and (4). Looking at Equations (10) and (11),
the E-field can be also a major contributor to the fluids’
energy budgets if it has a non-zero value and if it is not
perpendicular to the fluids velocity field.
However, the form of the MHD equations that we gen-

erally use in global coronal models is simplified through
a variety of assumptions to the single-fluid ideal MHD
equations. In particular, assuming non-relativistic flows
the displacement current and the electrostatic force are
ignored in MHD. As a result, the electric field and
the current density adopt a secondary role as they can
be eliminated from the equations, i.e. they can sim-
ply be computed from the other variables without solv-
ing a differential equation (E = −V × B and J =
∇ × B/µ0). The MHD equations then read (here in
a non-dimensional form, as also used in our code):

dρ

dt
+∇ · (ρV) = 0, (14)

d(ρV)
dt

+∇ ·
(
ρV⊗V + I

(
P + B2

8π

)
− B⊗B

4π

)
= ρg,

(15)

dB
dt

+∇× (−V×B) = 0, (16)

d

dt

(
ρ

V2

2 + ρE + B2

8π

)
+

∇·
[(
ρ

V2

2 + ρE + P

)
V− 1

4π (V×B)×B
]

= ρg·V.

(17)

where E is the non-dimensional internal energy and I
the identity diadic.
Assuming plasma with negligible resistivity, using the

definition of E as being the cross product of the magnetic
and velocity fields, Equation (16) and Equation (17) of
ideal MHD can be turned into:

dB
dt

+∇× (E) = 0 (18)

and

d

dt

(
ρ

V2

2 + ρE + B2

8π

)
+

∇·
[(
ρ

V2

2 + ρE + P

)
V− 1

4π (−(E))×B
]

= ρg ·V.

(19)

Equations (18) and (19) show the implicit inclusion of
the E-field in ideal-MHD. While in this sense, the E-field
is included in the model, these MHD equations do not
account for its absolute value, but only its curl and the
divergence of its cross product with the B-field. Unlike
the full multi-fluid model, in the ideal MHD equations
without resistivity, there are no mechanisms included
which would set constraints on the amplitude of the elec-
tric field in case it is accidentally artificially generated
in the simulation during convergence, as already pointed
out by Sokolov et al. (2021).
Starting with zero E-field at the beginning of the sim-

ulation, the E-field during the run will relax such that
Equations (18) and (19) are met. The contribution to
the E-field will thus come from its curl and from the
divergence of its cross product with the B-field. In prin-
ciple, in steady cases, the former should not contribute
to the rise of the E-field since ∂B/∂t is zero. Equiva-
lently, if the E-field was non-existent and remained non-
existent during convergence, the (−(E))×B term would
also be zero, regardless of the B-field orientation. This
would remove the contribution of this term to the en-
ergy budget (and thus possibly minimising the system’s
energy).
However, a steady magnetic field is not something

that time-stepping codes compute with, even for steady
cases. The magnetic field starts at some distribution
given by the initial state and keeps adjusting and chang-
ing during the time-stepping while converging to the
steady-state, giving rise to ∂B/∂t in between the iter-
ation steps. This means that also the electric field will
attain a certain distribution to satisfy the changing mag-
netic field. With the ideal-MHD formulation, as shown
above, the curl of this resulting E-field will be close to
zero to satisfy Equation (18), and its orientation with



6 Brchnelova et al.

respect to the B-field will be such that Equation (19) is
met, but there are no constraints on its actual value.
It should be emphasised that since the E-field in this

model represents the misalignment between the mag-
netic field and the velocity field, its value affects how
well the plasma flow will follow the resolved magnetic
field lines. Since the V × B product enters the energy
equation, ultimately, this does not only directly affect
the B- and V-fields, but, as will be shown later, also
other hydrodynamic variables such as temperature.

3. FORMULATING THE INNER BOUNDARY
CONDITIONS THROUGH E-FIELD ANALYSIS

Now that the E-field issue was introduced, first, the
sources of the spurious E-field in the simulations are de-
scribed. Next, the inner BC is re-formulated in order
to reduce the amount of this spurious E-field. Results
are shown for the steady dipole for both large E-field
and low E-field cases, through the comparison of which
the effects of the E-field and the impact of the new BC
can be studied. Comparison of the results will point to
another issue - which is the effect of numerical diffusion
causing reconnection, which will be briefly discussed af-
terwards.

3.1. Mechanisms of E-field generation
Let us first look at the major sources of the E-field in

the simulations. Since the domain here investigated is
spherical, the analysis from here on will be interpreted
using the spherical coordinate system, r, θ and ϕ. Dur-
ing our analysis, the main possible sources were identi-
fied as follows:

• the initial conditions;

• the inner and outer BCs;

• internal physical processes such as reconnection;

• the mesh topology and domain discretisation.

The first two points will be discussed in this paper pri-
marily. The third point represents an actual physical
process and is thus not something numerical adjust-
ments can (or should) influence. As will be shown later
in this paper, in some cases, premature magnetic re-
connection can actually be triggered by the other as-
pects, and in such a case, it can be also considered as
the result of the artificial electric field rather than its
source. The last point refers to the fact that the cur-
rently applied mesh, created as a radially-outward ex-
truded icosahedral surface, has locally patches of larger
distortion, skewness and non-orthogonality. This can
lead to the generation of artificial fluxes, giving rise to

mesh-related remnants in the solution. To first separate
these mesh-related artefacts, a technique was employed,
in which after the first simulation, the mesh was rotated
(here by 30 degrees in the positive ϕ direction) and the
simulation repeated (see the procedure in Brchnelova
et al. (2022)). This means that in the second simula-
tion, the mesh artefacts occur at different locations in
the domain and thus they can be easily identified and
corrected for, if needed, using interpolation from the two
solutions at the problematic locations.
In our case, through this technique, it was found that

the radial and the azimuthal components of the electric
field in the solution of the steady dipole were mostly
related to the mesh. An example of the Eθ remnants
is shown in Figure 2, where the electric field changes
polarity once the mesh is rotated by 30 degrees in the
positive ϕ direction. The same was observed for Er.
In general, both of these components had very small
values compared to the total E-field magnitude. This is
expected when looking at the magnetic field of the non-
rotating dipole (which has a negligible ϕ-component)
and Equation (17). These two components will thus not
be analysed extensively from here on.
However, the Eϕ (poloidal) component was a hundred-

fold larger and did not change polarity with the rotation
of the mesh (see Figure 3), demonstrating that this was
created due to reasons other than the mesh. As it is
the dominant component, it is the focus of our analysis
in the rest of the paper, as far as the dipolar field is
concerned.
The evolution of Eϕ during the transient in one of the

simulations is shown in Figure 4. The features which
were introduced at the zero-th iteration (on the left,
green arrows), created at the initial state, largely remain
in the simulation even after 100 iterations (as shown in
the right panel). In this case, the reason why the ini-
tial state had a non-zero E-field is the fact that the
initial velocity profile came from a piece-wise linear fit
of the Parker’s wind solution, while the initial B-field
came from a Potential Field Source Surface (PFSS) so-
lution, and these two were not parallel. Furthermore,
an additional Eϕ contribution, coming from the BC,
develops around the inner boundary during the itera-
tive process towards steady state, as highlighted on the
right of Figure 4 with blue arrows. What is shown in
Figure 4 already indicates two possible strategies for re-
ducing the artificial E-field, namely by 1) ensuring that
the initial state is completely E-field-free (set V0 such
that V0 × BPFSS = 0), and 2) adjusting the inner BC
to produce minimum contribution to the E-field.

3.2. Comparing large-E and low-E BC formulations
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Eθ contours - before mesh rotation Eθ contours - after mesh rotation

Eθ Eθ

Figure 2. The contours of Eθ before and after mesh rotation, showing that these structures are mostly mesh-related. We show
them in a vertical cut (as the dipole does not have longitudinal dependency) with contours set between -0.002 and 0.002.

Eφ contours - before mesh rotation Eφ contours - after mesh rotation

Eφ Eφ

Figure 3. The contours of Eϕ before and after rotation of the mesh, demonstrating that this E-field component is unrelated to
the mesh, but produced through other mechanisms. We show them in a vertical cut (as the dipole does not have longitudinal
dependency) with contours set between -0.55 and 0.0.

While the fact that the E-field exists and evolves in the
simulations has been shown, what it actually means for
the steady-state solution has not yet been demonstrated.
Whether or not some E-field exists at the initial state
depends heavily on the solver, and it is an issue that can

be easily fixed in most cases. Therefore, this aspect is
not discussed further. Instead, focus will be placed on
the formulation of the inner BC.
In this subsection, we will consider two separate cases.

The simulation that was shown in the previous para-
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Eφ contours - initial state Eφ contours - after 100 iterations

Initial state structures

Boundary-generated structures

Eφ Eφ

Figure 4. A demonstration of the types of spurious E-field developing within the computational domain: one due to the initial
state of the simulation (left, taken at iteration 0) and one caused by the inner BC (right, generated after 100 iterations).

graphs, with the BC producing the E-field, is the first
case, here indicated as the "large E" simulation. The
BC here used was taken from the code Wind-Predict
(Réville et al. 2015; Perri et al. 2018) and is one the
standard formulations for global coronal models. In this
setup, on the inner boundary, it is assumed that the
radial and azimuthal components of the B-field can be
derived from the PFSS solution, originally expressed in
cartesian coordinates:

Br,b = xb
rb
Bx,PFSS + yb

rb
By,PFSS + zb

rb
Bz,PFSS, (20)

Bθ,b = xbzb
ρbrb

Bx,PFSS + ybzb
ρbrb

By,PFSS −
ρb
rb
Bz,PFSS, (21)

where the b subscript refers to the boundary location
and in the instances of coordinate transforms, ρb rep-
resents

√
x2
b + y2

b . Then, the velocity condition is for-
mulated such that the poloidal flux is removed. Thus,
with

V ∗r,b = 1935.07
(Bref/

√
µ0ρref ) , Bpol =

√
B2
r,b +B2

θ,b

(22)

and V|| = V ∗r,b
Br,b
B2
pol
, (23)

the radial, azimuthal and poloidal velocities on the
boundary are:

Vr,b = V||Br,b, Vθ,b = V||Bθ,b and Vφ,b = 0. (24)

Herein, the value of 1935.07 m.s−1 was the prescribed
radial outflow on the inner boundary, as coming from the
Parker’s wind profile. This value was chosen as it is the
default value used in the Wind-Predict code, through
which our model was originally validated (Perri et al.
submitted).
The other simulation (i.e. "low E") was run with the

same setup and initial conditions, apart from the fact
that on the inner boundary, the E-field was enforced to
be zero in all of its components via:

Vb ×Bb = 0, (25)

from which the imposed direction of the velocity on the
boundary Vb was derived. In addition, while in the
previous case, the Bθ was set according to the PFSS so-
lution, see Equation (21), in this setup, this constraint
was omitted, and the Bθ was determined through a Neu-
mann condition just like Bϕ.
These seemingly small adjustments resulted in consid-

erable differences between the results. The radial veloc-
ity contours of the two cases are shown in Figure 5. It
is apparent that the "large E" case reaches higher ve-
locities on the outer boundary and creates also more
diffused profiles of the equatorial streamers. Further-
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Vr contours - low E simulation Vr contours - large E simulation

Figure 5. The radial velocity contours of the steady dipole case for two simulation cases with low and large electric fields. For
better legibility, units in km/s.

more, the "low E" simulation has additional features of
locally enhanced radial velocity patches near the outer
boundary in the equatorial regions. This is a subtle
but an important difference, since it fundamentally af-
fects the results on the 21 solar radii surface, which is
where the heliospheric EUHFORIA code is supposed to
be coupled and take its input data from. These two
simulations would have fundamentally different velocity
distributions passed to EUHFORIA; one of them with
larger velocities near the poles and the other with en-
hanced velocity in the region of the heliospheric current
sheet.
The observed velocity patches in the equatorial re-

gions are due to magnetic reconnection. The expected
profile of the magnetic field lines around a solar dipole
with an outflow can be found, for example, in the paper
of Pneuman & Kopp (1971). While most of the magnetic
field lines remain open, depending on the magnetic field
strength, there is a magnetic reconnection forming a cur-
rent sheet at distances of 1R� to 3R� in the equatorial
region. This collimated sheet then propagates through-
out the heliosphere. In our simulations however, we see
an additional reconnection in this current sheet.
Due to the finite discretisation and the presence of

some unavoidable artificial diffusion, when the current
sheet reaches a certain minimum thickness, it recon-
nects; creating an "X-point" in the B-field lines, opening
these lines up behind it. Where exactly (and if) this hap-
pens depends on a variety of factors, such as the BCs,

the B-field strength and also the grid resolution. The
presence of this X-point and its behaviour will be shortly
touched upon after the end of this subsection.
How the flow field responds to this X-point is the cause

of the qualitative differences in the velocity profiles in
Figure 5. In case of the "large E" case, the velocity
field does not follow the magnetic field lines well. Thus,
even though the B-field changes topology, the velocity
profile remains more or less undisturbed as it propagates
outwards. As a result, the magnetic reconnection does
not show in the final velocity field. For the "low E" run,
this is not the case as here, the velocity field does follow
the magnetic field, and so it also does respond to the
change in its topology. This can be more clearly seen in
Figure 6, where the edge of the domain is plotted with
Vr in the background and with the B-field lines plotted
on the top. Behind the X-point, the B-field lines start
to open up.
This showcased "ballooning" of the streamers due to

numerical diffusion is not physical, though it might be
stabilising for most simulations. However, it can present
problems later on when, for example, determining mag-
netic connectivity - in case we trace a magnetic field
line from the Earth (or another point of interest in the
heliosphere) back to the sun, it could get trapped in
this diverging region instead of finding its way to the
solar surface and to the corresponding photospheric fea-
tures. In addition, if we project this Br on the outer
surface, in the regions where the current sheet started
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Vr contours + B-field lines - low E simulation edge Vr contours + B-field lines - large E simulation edge

Figure 6. The demonstration of the high velocity patches near the edge of the domain in case of a flow field where the V and
B distributions are well aligned (on the left) and flow field with a large misalignment (on the right).

to diverge, the sign of the Br field might be incorrect.
Additional postprocessing of CFD results might be re-
quired to avoid these problems when coupling to helio-
spheric codes as a result.
The more diffused profile of the "large E" case, espe-

cially around the central region, is shown better as a
close-up in Figure 7. Considering that the two simula-
tions use exactly the same grid and none of them uses
a flux limiter (which would include excessive numerical
dissipation), minimising the E-field leads to a substan-
tial improvement in the resolution of the features. This
difference can mean that perhaps a coarser grid could
be used in production runs while achieving the same
accuracy, which would save computational resources.
In order to visualise how much the E-field has changed

between the two cases via the adjustment of the inner
BC, in Figure 8, the Eϕ is shown. The colourbar of each
subplot is adjusted to show the main features.
Some regions of a locally larger E-field are still ob-

served in the "low E" case, mainly following the mesh
on the surface. Despite that, the E-field is everywhere
in the domain at least 50 times smaller than the E-field
of the simulation without the adjusted boundary condi-
tion (on the right). For the improved case, in the do-
main, the E-field follows the structure of the streamers,
which is where it is the most difficult for the velocity and
magnetic fields to align. In the other case, the E-field

structure in the domain is mostly spherical, since it is
mostly the inner spherical BC generating it.
The sharpness and magnitude of the velocity field are,

however, not the only aspects that were found to change
significantly through the reduction of the E-field. It was
also found that the density and pressure profiles (and
thus also the derived temperature profile) were differ-
ent both qualitatively and quantitatively. Before the
adjustment, the temperature (here computed as the ra-
tio of the non-dimensional pressure and density) was
enhanced in the regions of strong magnetic field, i.e.
around the poles for the case of a dipole, see the right
side of Figure 9. After the adjustment, the temperature
was instead following the streamers around the equato-
rial regions (see the left side of the same Figure).
The density profile was also found to be more pro-

nounced for the "low E" simulations, see Figure 10. This
might significantly aid the accuracy of procedures such
as white-light imaging, where the density is the param-
eter to be integrated along the line of sight.
Lastly, convergence impacts should be discussed as

computational speed is, next to physical accuracy, a cru-
cial feature of global coronal modelling and any space
weather simulation in general. In general, with the new
formulation, the steady dipole case required two to three
times more iterations in order to reach the same final
residual. As we are mostly interested in realistic mag-
netic map-driven applications, however, a worse conver-
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Vr contours - low E simulation Vr contours - large E simulation

Figure 7. The radial velocity contours near the solar surface, with the colour bar adjusted to demonstrate the enhancement in
the sharpness of the streamers for the "low E" simulation (left). For better legibility, units in km/s.

Eφ contours - low E simulation Eφ contours - large E simulation

Eφ Eφ

Figure 8. The contours of the Eϕ field, the colour bar adjusted such that the features shows in both cases.

gence of the dipole case is of relatively little importance.
When running a variety of real magnetic map-based
cases as discussed in Kuzma et al. (submitted), it was
observed that the adjusted BC led to easier convergence
when using maps, especially those of the higher lmax.
For a constant CFL of 2 for the of the 2008 eclipse used
later in this paper, the convergence is compared for the

two inner BC formulations in terms of Vx residual in
Figure 11. After the initial jump in the residual, the
two simulations converge to the same residual of -4 af-
ter roughly the same number of iterations. The initial
larger residuals in the run with the adjusted inner BC is
due to the changing Bθ, as it is released from the PFSS
solution value.



12 Brchnelova et al.

Figure 9. The temperature distribution (here expressed simply as a ratio of pressure and density) of the steady dipole as
resolved in the "low E" (left) and "large E" (right) cases.

⍴ contours - low E simulation ⍴ contours - large E simulation

log(⍴) log(⍴)

Figure 10. The logarithmic density profiles of the "low E" (left) and "large E" (right) simulations.

3.3. Presence of the X-point and current sheet stability
Before moving into further investigation of the BCs,

the issue of the presence of the X-point in our CFD
simulations, as mentioned in the discussion of Figure 5,
should be addressed. It is important to discuss this phe-
nomenon also because it provides a context for the anal-

ysis of the outer BC formulations, mentioned later on in
the paper.
The (additional) reconnection of the B-field lines

which we have observed is normal also in other numeri-
cal codes, not just COCONUT (e.g. see the comparison
between our code and Wind-Predict in Perri et al. (sub-
mitted), where the same behaviour is observed in the
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Figure 11. The comparison of the convergence in the Vx component between the two eclipse cases computed with and without
an E-field generating boundary.

solution of Wind-Predict). As found during our numer-
ical experiments, beyond the BCs and the limiter, it is
mostly dependent on the grid resolution: with increasing
resolution, the reconnection point occurs further away
from the Sun. Table 1 shows the location of this recon-
nection point (in terms of solar radii) for four different
grids:

1. The coarse/coarse 300k grid: 5120 surface ele-
ments, 65 radial steps

2. The coarse/fine 980k grid: 5120 surface elements,
192 radial steps

3. The fine/coarse 1.3M grid: 20480 surface elements,
65 radial steps

4. The fine/fine 3.9M grid: 20480 surface elements,
192 radial steps

In Table 1, levels are used in order to express the longitu-
dinal/latitudinal discretisation. Level 5 refers to the 5-
th level subdivision of the elementary icosahedron from
which the mesh is derived, with 5120 surface elements.
Level 6 refers to the 6-th level subdivision with 20480
surface elements.
By simply refining the domain (without any changes

to the physics of the simulation), from Table 1, it can
be observed that the X-point moves by almost twice the
distance away from the solar surface. Thus, it can be
inferred that the reconnection occurs mainly due to the
finite discretisation, with its location depending on the
amount of numerical diffusion in the domain.

Table 1. The position of the reconnection point in the do-
main for a steady dipole (in terms of solar radii) as a function
of mesh resolution.

#Cells [M] Lat./Long. Radial X-point [solar radii]
0.3 level 5 coarse 7.2
1.0 level 5 fine 8.4
1.3 level 6 coarse 8.1
3.9 level 6 fine 13.3

In addition, it was found that the behaviour and shape
of the current sheet (and thus also the location of the
reconnection point) also depends on the amount of the
B-field divergence in the flow field. By default, in our
simulations, for the B-field divergence cleaning constant,
we use the value of 1, leading to the amount of diver-
gence of B to be in the order of -4 to -5 (nondimen-
sional). With lower values of the cleaning constant, it
was observed that the amount of the divergence of B-
field decreased, see Figure 12, where the logarithm of
the absolute value of φ (the divergence cleaning param-
eter) is shown. The BC treatment for φ (homogeneous
Neumann or Dirichlet) on the inner boundary does not
significantly affect this distribution and in the default
configuration, φ is set to 0 (i.e. homogeneous Dirichlet).
However, decreasing the value of the cleaning constant

below a certain threshold destabilises the simulation.
The particular value which causes this most likely de-
pends on the specific scheme, the mesh and the BCs; in
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Log10(|ϕ|) - ∇·B constant of 1.0 Log10(|ϕ|)  - ∇·B constant of 0.4

log(Φ) log(Φ)

Figure 12. The amount of ∇ ·B in the numerical solution, depending on the selection of the divergence cleaning constant (1
on the left, 0.4 on the right), is shown in terms of the logarithm of the absolute value of ∇ ·B (non-dimensional).

our case it is around the value of 0.3. The simulation
reaches a certain minimum residual, following which the
residual increases again and starts to oscillate indefi-
nitely. What this means for the simulation is that the
current sheet becomes unstable. The reconnection re-
gion starts to move forward and backward between itera-
tions (on the current mesh, generally oscillating between
5 and 10 solar radii), creating lumps of mass which are
ejected outwards. To illustrate this, the projection of
the radial velocity on the outer surface (where the pass-
ing lumps are the most visible) is shown in Figure 13.
We should note that this kind of unstable structures is
actually visible in the observations of the solar wind,
although they appear for more physical reasons (recon-
nection along the HCS that eject flux ropes and density
structures, see Réville (2020)).
Thus, it it apparent at this point that both the nu-

merical dissipation due to the finite discretisation and
the amount of ∇ · B in the domain affect the shape
and behaviour of the current sheet. As we aim at de-
veloping software which will eventually have standard-
ised and automatised handling of magnetic map-based
simulations, the above-mentioned oscillating behaviour
in the residual is not desirable, even though at certain
phases, the reconnection point is located much further
away from the Sun than without it. When the resid-
ual starts oscillating, it becomes difficult to infer the
state of convergence of the solution without any visual

inspection. Since the higher values of the cleaning con-
stant give quantitative results comparable to the time-
averaged values of the oscillating solution, it was decided
to keep the value of the cleaning constant to 1 for all our
simulations.
Even though we can now explain the behaviour and

the origin of the X-point, its presence still complicates
matters, for reasons already outlined earlier such as cou-
pling to EUHFORIA or magnetic connectivity studies.
It is thus important to lower the amount of numeri-
cal diffusion as much as computationally feasible and
to move this reconnection point as close to the outer
boundary as we can; which can be, to some extent, re-
alised through the outer boundary conditions.

4. FORMULATING THE OUTER BC THROUGH A
PARAMETRIC STUDY

It has already been established that the inner BC has
a major influence on the results. In order to maximise
our gain in terms of accuracy and computational perfor-
mance for a given mesh resolution, the outer BC should
also be addressed.
Firstly, a parametric study will be presented, where

the formulations of all of the primitive variables are var-
ied and studied systematically. Afterwards, special focus
will be placed on how the density and magnetic field BCs
should be formulated at 21.5R�. Finally, a new tech-
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Vr - projection before oscillation Vr - projection during oscillation

Figure 13. The projection of Vr in [m.s−1] on the outer surface of the domain before (left) and during (right) the unstable-
current-sheet residual oscillation shows that once the unstable oscillation is activated, the current sheet stops being continuous
and forms mass lumps that are ejected outwards.

nique will be demonstrated where the BC effects can be
further reduced via a careful grid design.

4.1. Parametric outer BC analysis
As pointed out in the introduction, the formulation

of the outer BC in available literature is often reduced
to calling it a simple extrapolation. It is indeed clear
that since the outer boundary is supersonic, the hydro-
dynamic variables cannot be prescribed, but they must
be extrapolated from the inner states. However, this
extrapolation can be formulated in various ways. The
prescription can simply be done through a zero-gradient
extrapolation (i.e. homogeneous Neumann condition)
or through the extrapolation of the given variable via a
function of the radius or density. The effects that these
different formulations have on the behaviour of the code
or shape of the solution has, to the Authors’ knowledge,
not yet been extensively discussed in the available litera-
ture. For this reason, a parametric study was performed
to analyse these effects in a systematic way.
All of the primitive variables of the code,

ρ,Bx, By, Bz, Vx, Vy, Vz, p, and φ (the divergence clean-
ing parameter), were extended either via zero-gradient
(the ghost state being equal to the inner state, where
the distances of the inner cell centre and the ghost cell
centre to the boundary are equal) or via a function of ra-
dius or density, or both. The formulations of the specific
functions for the velocity and the magnetic field were
taken (apart from the last expression in Equation (26))

from Talpeanu et al. (2022). The following expressions
for density

ρ = cst. or ρr2 = cst. or ρr3 = cst., (26)

velocity

Vr = cst. Vθ = cst. Vϕ = cst. (27)

or
Vrr

2ρ = cst. Vθ = cst. Vϕr = cst., (28)

magnetic field

Br = cst. Bθ = cst. Bϕ = cst. (29)

or
Brr

2 = cst Bθ = cst. Bϕr = cst. (30)

and φ

φ = cst. or φb = 0, (31)

were combined into 9 different cases, as summarised in
Table 2. In the Table, "G" refers to the ghost state, "I"
to the inner state and "B" to the location on the bound-
ary. To achieve continuity in temperature, the pressure
was extrapolated in the same way as the density. The
magnetic configuration was again dipolar for easier eval-
uation. All of these cases were simulated with the same
CFL law (starting from 2 with the CFL doubling every
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Table 2. The setup of 9 different dipole simulation cases with varying outer BC settings.

No ρ Br Bθ Bϕ Vr Vθ Vϕ p φ

1 G = I G = I G = I G = I G = I G = I G = I B = I B = 0
2 G = I r2

I

r2
G

G = I G = I G = I G = I G = I G = I G = I r2
I

r2
G

B = 0

3 G = I r2
I

r2
G

G = I r2
I

r2
G

G = I G = I G = I G = I G = I G = I r2
I

r2
G

B = 0

4 G = I r2
I

r2
G

G = I r2
I

r2
G

G = I G = I rI
rG

G = I G = I G = I G = I r2
I

r2
G

B = 0

5 G = I r2
I

r2
G

G = I r2
I

r2
G

G = I G = I rI
rG

G = I G = I G = I G = I r2
I

r2
G

G = I

6 G = I r2
I

r2
G

G = I r2
I

r2
G

G = I G = I rI
rG

G = I r2
IρI

r2
G
ρG

G = I G = I rI
rG

G = I r2
I

r2
G

B = 0

7 G = I r2
I

r2
G

G = I r2
I

r2
G

G = I G = I G = I r2
IρI

r2
G
ρG

G = I G = I rI
rG

G = I r2
I

r2
G

B = 0

8 G = I r2
I

r2
G

G = I G = I G = I G = I r2
IρI

r2
G
ρG

G = I G = I rI
rG

G = I r2
I

r2
G

B = 0

9 G = I r3
I

r3
G

G = I r2
I

r2
G

G = I G = I rI
rG

G = I r2
IρI

r2
G
ρG

G = I G = I rI
rG

G = I r3
I

r3
G

B = 0

Table 3. Results for the X-point location, the maximum Vr
and the time to converge down to the residual of -10 in Vx
for the various outer BC simulation cases.

No X-point [R�] Vr,max [ms−1] TVxres<−10 [s]
1 5.8 3.09E+05 7135.12
2 6.7 2.87E+05 7174.89
3 7.2 2.86E+05 7150.49
4 7.2 2.84E+05 7162.78
5 6.5 2.84E+05 N/A
6 7.2 2.84E+05 7171.25
7 7.2 2.84E+05 7157.08
8 7.1 2.86E+05 7161.79
9 7.2 2.79E+05 7157.28

few hundred iterations up to 128) for controlling the con-
vergence to steady state, making comparisons between
them possible.
For each simulation, the Vr profiles were compared as

well as the maximum Vr value and the location of the
X-point in the B-field lines, since its location generally
directly corresponded to the divergence of the field lines
near the outer boundary. The evaluation of the exact
location of the X-point has uncertainty of approximately
±0.05R�, since it was determined by eye inspection of
the solution in a visualisation software. In addition, the
total time of each simulation required to reach the Vx
residual of -10 was also measured to compare the conver-
gence. The results for the 9 cases are given in Table 3.
From observing the convergence alone, it can be

quickly concluded that the divergence cleaning parame-
ter φ must be set to 0 via the Dirichlet boundary con-
dition instead of being extrapolated via zero-gradient,
given that the fifth simulation never converged. The re-
sults presented in Table 3 were taken at the Vx residual

of roughly -2.5. It was further experimented to see which
Dirichlet formulation is better - setting φg = 0 or φb = 0
- but both led to roughly the same convergence and the
same solution, with the former giving slightly larger di-
vergence of the B-field lines near the outer boundary.
The convergence of the other cases, in terms of the com-
putational resources needed, was almost the same.
According to the results in Table 3, if we consider the

other two evaluated parameters alone (the maximum Vr
and the location of the X-point), the following points
can be further raised:

• from comparing cases 3 & 4 and 6 & 7: whether we
extrapolate Bϕ via zero-gradient or radius is of no
consequence (at least for the non-rotating dipole,
where Bϕ is negligible);

• from comparing cases 7 & 8 and 8 & 9: Br should
be extended via a function of radius (here r−2)
instead of a zero-gradient (this will be revisited in
the subsection below);

• from comparing cases 2 & 8 and 4 & 6: whether
we extrapolate V via zero-gradient or the given
laws is of barely any consequence;

• from comparing cases 1 & 2: the density (and pres-
sure) should be extrapolated as a function of ra-
dius (here r−2);

• from comparing cases 6 & 9: the density (and
pressure) extended via r−3 gives lower maximum
speeds.

Obviously, simply observing the location of the X-
point alone is insufficient to justify the variable pre-
scription to make the case physical. Nevertheless, these
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Figure 14. The comparison of logarithms of different distance functions (inverse cubic in red, inverse square in green and
inverse 2.5 power-law profile in blue) with the behaviour of the logarithm of the nondimensional density versus the distance
from the Sun (in solar radii). The profiles were designed to intersect at 21.5R� to allow for slope analysis.

results are a good indication to which conditions the be-
haviour of the solution is very sensitive and to which it is
not. Especially the extrapolation of the radial magnetic
field component seem to have a profound effect on the
magnetic field line topology, judging from the shifting of
the reconnection location. In addition, the formulation
of the extrapolation of density also affects the maximum
speeds in the domain. Thus, these two aspects will be
elaborated on in more detail in the following subsections.

4.2. Density profile analysis
While Table 3 indicates that the density extrapola-

tion affects the maximum speed in the domain it is still
not clear whether a more physically accurate result is
given by the inverse square, inverse cube or perhaps
some other law. The most of the available coronal mod-
els use the inverse square extension (see, for example,
Talpeanu et al. (2022)), as this represents a flow that
is expanding spherically with a uniform radial speed.
However, from the Vr contours shown in, for example,
Figure 5, it is apparent that the flow is still accelerating
near the outer boundary, making the uniform-flow as-
sumption incorrect. In addition, it will be shown later
that in some regions of the domain of data-driven cases,
the flow is expanding super-radially. For these reasons,
a steeper descent of ρ could be expected.

In order to determine which formulation is more ac-
curate, an extended-grid analysis was performed, where
the computational domain radius was set to 30 R� and
the cells around 21.5 solar radii were more refined ra-
dially to capture the local gradients better. This way,
the outer BC was relatively far away from this region,
and thus the undisturbed density profile at 21.5 R� that
would exist at this location without the presence of the
boundary could be investigated. The setup was other-
wise equivalent to the case 9 from the parametric study
described above.
Initially, 1/r2 and 1/r3 profiles were compared to the

non-dimensional density. For easier comparison of the
local slopes, the logarithms of the profiles were used for
the analysis. These logarithms were plotted around the
region of interest, at 21.5R� where they were made to
intersect with the logarithmic non-dimensional density
profile as extracted from the CFD solution. The results
are shown in Figure 14, where the green profile is the
inverse square distance function and the red profile the
inverse cubic distance function.
It was observed that the actual CFD density slope

lied roughly in the middle between, and thus also a new
profile, the function of 1/r−2.5 was added, shown as the
blue line in Figure 14. It can be concluded easily that
this profile matches the density slope at the given radius
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almost perfectly. With this power law used as the outer
BC for density, the maximum reached radial velocity for
the steady dipole (now again modelled in the 21.5 R�
domain) is 2.82E+05m.s−1, considering the same reso-
lution as used for the cases in Table 2.

4.3. Magnetic field analysis
The same analysis was performed on the magnetic

field BC. For a flow that is not expanding super-radially,
the magnitude of Br should be roughly decreasing with
r2. Capturing the correct gradient of Br is important
as it also strongly affects how the Bθ and Bφ are also
resolved. To demonstrate the difference that the ex-
trapolation of Br alone causes, we compare Br and Bθ
between the cases 2 and 3 from Table 2 by evaluating the
differences Br,diff = Br,2−Br,3 and Bθ,diff = Bθ,2−Bθ,3
in Figure 15. From this Figure, two observations can be
made. Firstly, as a result of the outer BC formulation,
Br changes not only near the boundary, but also inside
of the domain. Secondly, it is apparent that also Bθ
changes as a result of the Br extrapolation, despite the
fact that the condition for Bθ remained unchanged.
The consequences this has on the flowfield and topol-

ogy can be easily visualised when comparing the result-
ing magnetic field lines in Figure 16. One of the field
lines from case 2 is outlined in red and then projected
onto the domain of case 3, where it is compared to a
case 3 field line in blue that starts at the same point on
the boundary. This illustrates that the field lines of case
3 are less divergent, especially close to the outer edge.
The fact that the outer BC affects the magnetic

topology so extensively even inside of the domain is
concerning, especially since we cannot always ensure
that there are no regions where the flow would ex-
pand super-radially (as will be shown later in case of
a magnetogram-driven case).

4.4. A BC-independent grid?
As shown in the previous two sections, correct formu-

lations of the BCs are not always straightforward and
can effect the flow in the entire domain. Especially for
cases where the BC formulations cannot be formulated
universally, it would be useful to have additional tools
to reduce the extrapolation error.
The larger the region of extrapolation (the ghost cell),

the larger the extrapolation errors are, which can then
also more considerably spoil the solution in the rest of
the domain. In the original grid which has been used
so far, the last cell has the radial size of roughly 1 R�,
meaning that the centre of the ghost cell is 0.5 R� away
from the boundary. If the last grid cell is made even
larger, the effects become even more pronounced. In-
verting this logic, with a very small edge cell, the ghost

cell centre is also very close to the boundary and thus
the extrapolation errors should be limited.
Moreover, the results on the outer boundary are very

important from the perspective of coupling and trans-
ferring the CFD results to other software. Thus, not
knowing how much of an effect the BC formulation can
have on these results (at least locally), we do no longer
deem it safe to apply these BCs exactly at the location
from which the solution is to be read. It would be thus
better practice to extent the domain beyond the cou-
pling location of 21.5 R� to make sure that the solution
at the coupling location is not significantly affected in
case the BC formulation is inadequate.
For this reason, an experimental grid was set up,

which extends up to 25 R� and which has a very small
cell on the outer edge to demonstrate that the extrapola-
tion error depends on the extrapolation distance. With
this new grid, cases 1 and 9 (i.e. the cases with arguably
the largest differences between them in outer BC for-
mulations) were re-run and compared. The new mesh
is shown in Figure 17, along with the 21.5 R� location
and the boundary detail.
For both grids (the original and the new one), the

relative differences (in absolute scale) in Vr between the
two cases were evaluated. These relative differences are
plotted in Figure 18; on the left for the original grid and
on the right for the new grid. Once again, we can see
that on the former mesh with the large ghost cell (on
the left), the outer BC formulation affects the solution
even very close to the Sun. The differences with the
new mesh are not even properly visible with the colour
scale adjusted for the old grid; as they are 10 to 100
times smaller in magnitude everywhere in the domain.
Clearly, with this new mesh design with a small ghost
cell, the relative differences between the cases due to
different extrapolation formulations are much lower.
It should be noted that this grid was designed in this

way to merely demonstrate the effects of the size of the
ghost cell. The fact that the last cell is so much smaller
than the neighbouring cell, with such a large aspect ratio
difference, could in practice cause problems with conver-
gence. If that happens, a more gradual decrease in cell
size near the outer boundary might be required at the
cost of having to include more cells and thus increas-
ing the computational demands. In our case however,
with this grid, we have so far not observed any conver-
gence problems even when resolving solar maxima, nor
we have noticed any significant reduction in the compu-
tation speed.
The above mentioned analysis of the inner and outer

BCs considered a dipolar case only. To see how well
the results of this analysis hold for a real case, the same
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Differences in Br - case 2 and 3 Differences in Bθ - case 2 and 3

ΔBr ΔBΘ

Figure 15. The differences Br,diff = Br,2 − Br,3 (left) and Bθ,diff = Bθ,2 − Bθ,3 (right) between cases 2 and 3 as a result of
using different Br extrapolations.

Vr contours + B-field lines - case 2 Vr contours + B-field lines - case 3

Figure 16. Comparison of the shape of the "ballooning" current sheet of case 2 and case 3 as a result of a different Br
formulation. For easier comparison, the red line following a case 2 B-field line (left) is projected onto the case 3 flowfield (right),
where the same line (with the same point where it starts and ends on the boundary) is followed in blue.

analysis was repeated on a magnetogram-driven simula-
tion.

5. APPLICATION TO A MAGNETIC
MAP-DRIVEN SIMULATION
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Figure 17. The "boundary-condition-independent" mesh developed for coupling with other codes. The ghost cell is very small,
and thus the outer BC extrapolation errors are limited. In addition, the boundary is shifted further away from the 21.5 R�
from which the results are extracted, such that the solution at this coupling location is not affected by the BC formulation.

Differences in Vr, case 1-9, original mesh Differences in Vr, case 1-9, new mesh

|ΔVr|
  Vr

|ΔVr|
  Vr

Figure 18. The relative difference in Vr (in absolute sense) between case 1 and case 9, with the ordinary (left) and new (right)
mesh. Before, the differences in the formulation of the BC between cases 1 and 9 led to relatively large differences in the velocity
profile. With the improved mesh with smaller extrapolation effects, this is no longer the case.

Having analysed BCs formulations on a simple dipole
simulation, it is essential to also look at realistic mag-

netic map-driven simulations as these are the main in-
tended applications for global coronal modelling. To this
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Vr contours + B-field lines - case 1, original grid Vr contours + B-field lines - case 1, new grid

Figure 19. Demonstration of how the new grid design (on the right) with a small ghost cell can help prevent excessive opening
of the streamers observed with the original grid (left) with the same outer BCs.
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Figure 20. The magnetic field configuration, Br and Bθ from PFSS, of the 2008 eclipse.

end, the solar eclipse from 2008 was investigated, the
magnetic map of which (in combination with the PFSS
solution for Bθ) is shown in Figure 20. The magnetic
map used was an MDI map with lmax of 25 (Scherrer
et al. 1995). The projections used are the same as for

the dipole, where a vertical cut (at y = 0 in the Cartesian
system) was made. This projection is preferred unless
observational comparisons must be made, since from the
previous analysis of the dipole, in this configuration, it
is already known where the mesh artifacts are located.
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Eφ contours - low E Eφ contours - large E

Eφ Eφ

Figure 21. The Eϕ component for the two eclipse cases computed with and without the E-field generating boundary.

First, let us observe the effects of the inner BCs and
the artificial E-field. Exactly as for the dipole, a "low
E" and a "large E" simulations were run.
Similarly to the dipolar results shown previously, these

adjustments to the BC allowed the simulation to arrive
to a result with much lower E-field (locally at least 20
times lower everywhere in the domain) compared to the
original "large E" BC defined in Equations (22), (23)
and (24), see Figure 21.
These two results were compared to the 2008 eclipse

observations by M. Druckmüller, P. Aniol and V. Rušin 1

in Figure 23. In an ideal-case scenario, we could employ
techniques such as white-light imaging to compare our
results to the photos of the corona. However, since at
this stage, we are still working with a polytropic model
without any additional heating terms, the magnetic field
is a much more reliable indicator of simulation accuracy
compared to the density (which is required for white-
light imaging). To perform this comparison using the
magnetic field with as much objectivity as possible, we
adopt the approach of Wagner et al. (2022), where we
will focus on the resolution of streamers as the decisive
factor. This is because of the fact that in the future, it
is expected that these simulations will be also used to
compute the evolution of flux ropes (which will be seeded
on the inner boundary) for modelling of CMEs and as
well as the propagation of the solar energetic particles.

1 http://www.zam.fme.vutbr.cz

Both of these aspects are essential elements for space
weather forecasting and both of these heavily depends
on the resolution of the background coronal dynamics,
such as streamers.
In Figure 23, the first row shows the radial veloc-

ity contour in the background and the magnetic field
lines plotted on the top of them, which were initiated
randomly but on the same places for both simulations.
The "low E" simulation is on the right while the "large
E" on the left. In the second, third and fourth row of
the Figure, we can see the comparison of the angle of
the main streamer, the extent of the streamer and the
size of the streamers, respectively. These aspects as de-
termined from the observation are indicated in red and
for each simulation result, the corresponding aspects are
indicated in pale blue in the respective subfigures. The
size of the streamers was determined at 1.3 R� - with an
offset from the surface, just like in case of Wagner et al.
(2022). This offset was used due to the fact that the
size of the streamers too close to the surface is mostly
dependent on the magnetogram type and its resolution,
while further away, the determination of the size from
the observation becomes more and more difficult.
The biggest difference between the two models is ob-

servable already from the first row. It is the fact that
in the case with the large electric field (on the left of
the Figure), the B-field lines are closed, round and do
not copy well the observed sharp streamers. As a re-
sult, for example, the SE feature in case of the "large
E" seems to only consist of closed field lines, not form-

http://www.zam.fme.vutbr.cz
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Vr contours - low E simulation Vr contours - large E simulation

Figure 22. The Vr contours for the "low E" and "large E" 2008 eclipse cases.

ing a sheet surrounded by open field lines shown in the
observations. The same holds for the dominant western
feature. Apart from the upper western feature, the new
BC can also reproduce the angle of the streamers better
(second row). This result also better matches the extend
of the streamers (row three) and slightly better the size
of the features (row four).
Just like in the case of the dipole, while the differences

in the sharpness of the features were significant, the
most striking differences were seen in the temperature
profile. The temperature profiles for the two cases, here
defined simply as the ratio of the non-dimensional pres-
sure and density, are shown in Figure 24. The two cases
have completely different temperature distributions and
magnitudes, despite having the same temperature pre-
scribed on the inner boundary. The fact that such im-
portant differences can arise as a result of the implicit
prescription of the electric field, to the Authors’ knowl-
edge, has never been highlighted in existing literature.
Next, since we could see in case of the dipole that

the magnetic structure of the current sheet was heav-
ily influenced by the extrapolation error, here we ap-
plied the same analysis to demonstrate these effects on
real magnetogram. We have examined the Br profile
along one such streamer; the lower left high-intensity
streamer of the 2008 map. In this analysis, the cor-
rected, extended, small-ghost cell grid was used for the
map simulation and thus the slope at 21.5 R� should
not be heavily affected by the presence and the formu-
lation of the outer BCs. The cut and the corresponding

Br profile are shown in Figure 25. Here, to determine
the centre of the streamer along which the Br profile
was extracted, the logarithm of the absolute value of Br
is shown in the background of the contour plot. The
location of the smallest log10(Br) corresponds to the lo-
cation of the current sheet as was determined by the
magnetic field lines.
Figure 25 shows that along this streamer, Br does no

longer follow the inverse squared profile, but decreases
much steeper. Actually, the slope, as shown from the fit-
ting curve, lies somewhere between the third and fourth
inverse power. In case of the dipole, prescribing the de-
scent of Br with a smaller power resulted in the stream-
ers opening up more than in case of an accurate pre-
scription. In this case, we see the same effect, with the
difference that here even the 1/r2 law is insufficiently
steep. This is, however, only limited to the region of the
streamer.
Thus, having a grid which limits the effect that the

extrapolation can have on the B-field topology, such as
the grid introduced in the previous section, is truly an
advantage. To demonstrate the effects of the grid alone,
the 2008 map results on an ordinary grid with the r−2

extrapolation were compared to the 2008 map results
for the improved grid with small ghost cells, also using
the r−2 extrapolation. The magnetic field lines (along
with the absolute value of Bθ) are shown in Figure 26,
where the most prominent, lower left streamer is shown.
It is clear that the extrapolation error with the orig-

inal grid leads to excessive divergence of the stream-
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Figure 23. The comparison of the results of the 2008 simulation with "low E" (right) and "large E" (left) setups with the
observations, using the framework by Wagner et al. (2022).

lines near the boundary due to the insufficient extrap-
olation power. The same locally-incorrect BC with the
improved grid, however, does not show this excessive
divergence, as the angle of the B-field lines does not
change near the boundary.
In summary, from the magnetic map-based applica-

tion, it can be seen that setting the initial state and
the inner boundary to produce no electric field leads to
quantitatively and qualitatively different solutions, with
more physical temperature profiles, sharper streamers
and a better reproduction of the observational data. Us-
ing a grid which limits the errors due to extrapolation
on the outer boundary, on the other hand, prevents ex-
cessive divergence of the streamers without the need to
locally modify the extrapolation laws.

6. CONCLUSIONS AND RECOMMENDATIONS
In this study, we have focused on numerical aspects of

global coronal modelling. We started with the inner BC,
to which we got through an analysis of the ideal-MHD
formulation compared to the full multi-fluid MHD. Due
to the removal of the magnitude of the E-field from the
MHD equations, which in practice represents how well
the magnetic and velocity structures are aligned and fo-
cused, the ideal-MHD equations can lead to qualitatively
and quantitatively very different results simply depend-
ing on the initial state and BC formulations. It is thus
important to monitor the E-field in the simulations and
aim to reduce the amount of it generated artificially.
Two different techniques to avoid excessive E-field were
discussed in this paper; i) ensuring that the simulation is
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Figure 24. The comparison of the non-dimensional temperature profiles between the 2008 eclipse cases computed with (right)
and without (left) an E-field generating boundary.
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Figure 25. The Br slope (logarithmic, on the right) along a streamer from the 2008 eclipse simulation on the BC-independent,
extended grid (shown as a black line on the left), showing a steeper grid than the expected 1/r2 scaling.

initiated from a completely E-field free state and ii) ad-
justing the inner BC to prevent the generation of the
E-field on the inner surface.
Here, the two types or simulation cases were com-

pared; one with a large electric field in the domain and
one with a low electric field. It was shown that the artifi-

cially generated E-field leads to streamers being resolved
less accurately on the same grid. Furthermore, it was
also found that the resulting temperature profile had a
fundamentally different shape when the E-field was min-
imised compared to the simulation with the spurious-E-
field-generating BC. The new temperature profile was
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|Bθ| and B lines - normal grid, r |Bθ| and B lines - new grid, r-2 -2
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Figure 26. The comparison between the B-field lines (with the absolute value of Bθ in the background) for the old and the
new "BC-independent" grid, with both simulations extrapolating Br through the inverse square power. The results for the old
grid with excessive divergence are shown on the left, while the results with the adjusted grid with small ghost cells are on the
right.

following the structures of the streamers instead of the
magnetically enhanced regions.
Briefly, we have also discussed the problem of addi-

tional reconnection in the domain due to numerical dif-
fusion. We have shown that the location of the region
where this happens depends on the refinement of the
grid and the amount of magnetic field divergence in the
domain.
Next, also the outer BCs were discussed. Since many

formulations are nowadays in use in which the variables
are extrapolated to the ghost cells or onto the outer
boundary, a parametric study was conducted to study
the effects of these formulations in a systematic way.
Nine different cases were compiled, where the BC for-
mulations were varied for the velocity, magnetic field,
pressure, density and the divergence cleaning parame-
ter. Several conclusions were reached from this study;
with some of the most notable being that:

• the divergence cleaning parameter needs a zero
Dirichlet outer BC for the simulation to converge;

• as long as the divergence cleaning parameter is
set through a zero Dirichlet condition, the conver-
gence performance of the other cases with varying
outer BC formulations was almost the same;

• the aspects which seem to affect the solution the
most are the extrapolation formulations of density
and the radial B-field component.

Afterwards, the extrapolation of ρ and Br was investi-
gated in more detail. This was done through running an
extended-domain simulation up to 30 R�, such that the
undisturbed profiles of these variables at the intended
boundary, at 21.5 R�, could be studied. It was found
that at this distance, the density decreases roughly with
r−2.5 for our conditions and that the formulation of the
Br outer BC can affect magnetic field topology in the
entire rest of the domain - which can be problematic
in case we locally obtain super-radially expanding flow.
To further limit outer-BC extrapolation errors beyond
their careful formulation, an additional technique was
presented; a new grid design. This design has very small
cells in the outermost radial layer, such that the ghost
cells are also very small and very close to the boundary.
In this fashion, the extrapolation errors due to the BC
formulation are limited, as the magnitude of the extrap-
olation errors depends on the extrapolation distance.
Secondly, this grid extends beyond 21.5 R�, which is the
location from which the CFD solution should be trans-
ferred to another (heliospheric) code, to 25 R�. Thanks
to this extension, even if there are still some effects due
to inaccurate outer boundaries, these are not likely to
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affect the solution which is used as an input to other
codes.
Finally, all of the proposed adjustments were studied

on the real magnetic map case of the 2008 eclipse, in or-
der to allow for directly comparing our numerical results
with observed coronal structures. Using the new inner
BC, the E-field in the solution was found to be reduced
by more than 20x, and thus allowed for a much sharper
resolution of the coronal features on the same mesh. The
agreement between adjusted, sharper coronal features
and observational data increased significantly. The Br
profile analysis was repeated, here not in a quiet region
as before, but along one of the streamers in the solution
on the larger grid with a small ghost cell. Along this
streamer, the Br profile became much steeper compared
to the quiet regions, and extrapolations with power-laws
of −3 to −4 would locally have to be applied, as the
extrapolation through the inverse square law led to ex-
cessive streamline divergence on the ordinary grid. This
divergence was, however, prevented when the new grid-
type was used instead.
Much work is still required to develop a highly accu-

rate and computationally efficient global coronal model
which could work effortlessly on arbitrary real-time
data. A number of different models are currently in
development globally, experimenting with a variety of
numerical schemes, geometries, grids and MHD formu-
lations, trying to push forward the frontier of current
state-of-art. As we have noticed however, many times
it is the small details in the numerical settings, such
as a specific BC formulation, which can drastically im-
prove the performance or the resolution of the model.
For that reason, it is very important to keep paying at-
tention to these small details and their effects, and to
share these observations with the community if possible.
In future work, we hope to further investigate the be-

haviour of ideal-MHD CFD for global coronal modelling
from the numerical perspective, as for example focusing
on topics such as determining the minimum required
spatial resolution or the effects of using different types
of magnetic maps and map-smoothing functions. Once
the solver is optimised to run with a reasonable accuracy
and reliability, we aim to replace the steady-state mag-
netic maps with time-dependent simulations and flux
rope injections. In addition, we also aim to develop a
multi-fluid version which will resolve ions, electrons and
neutrals as separate fluids.
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